Computed Tomographic Characterization of Subjects Enrolled in the STATCOPE Investigation

The goal of this project is to provide detailed objective measures of emphysema, airway disease, and vascular disease in a subset of subjects enrolled in the STATCOPE Investigation (a randomized trial of simvastatin or placebo for the prevention of AECOPD).  CT scans will be performed at baseline and study termination.  We may then be able to determine which subjects best respond to such therapeutic intervention and if statin therapy mitigates disease-related progression in CT measures of emphysema, airway, and vascular disease.

Raúl San José Estépar

Dr. Raúl San José Estépar

Associate Professor of Radiology in Harvard Medical School
Lead Investigator at Brigham and Women's Hospital
Raúl is Associate Professor of Radiology at Harvard Medical School and a Research Associate at Brigham and Women's Hospital. He is the co-director of the Applied Chest Imaging Laboratory (ACIL).
1249 Boylston St, Room 216
Boston, MA, 02215
p: 617 525-6227
Gazourian L, Rogers AJ, Ibanga R, Weinhouse GL, Pinto-Plata V, Ritz J, Soiffer RJ, Antin JH, Washko GR, Baron RM, et al. Factors associated with bronchiolitis obliterans syndrome and chronic graft-versus-host disease after allogeneic hematopoietic cell transplantation. Am J Hematol. 2014;89 (4) :404-9.Abstract

Bronchiolitis obliterans syndrome (BOS) is a form of chronic graft vs. host disease (cGVHD) and a highly morbid pulmonary complication after allogeneic hematopoietic stem cell transplantation (HSCT). We assessed the prevalence and risk factors for BOS and cGVHD in a cohort of HSCT recipients, including those who received reduced intensity conditioning (RIC) HSCT. Between January 1, 2000 and June 30, 2010, all patients who underwent allogeneic HSCT at our institution (n = 1854) were retrospectively screened for the development of BOS by PFT criteria. We matched the BOS cases with two groups of control patients: (1) patients who had concurrent cGVHD without BOS and (2) those who developed neither cGVHD nor BOS. Comparisons between BOS patients and controls were conducted using t-test or Fisher's exact tests. Multivariate regression analysis was performed to examine factors associated with BOS diagnosis. All statistical analyses were performed using SAS 9.2. We identified 89 patients (4.8%) meeting diagnostic criteria for BOS at a median time of 491 days (range: 48-2067) after HSCT. Eighty-six (97%) of our BOS cohort had extra-pulmonary cGVHD. In multivariate analysis compared to patients without cGVHD, patients who received busulfan-based conditioning, had unrelated donors, and had female donors were significantly more likely to develop BOS, while ATG administration was associated with a lower risk of BOS. Our novel results suggest that busulfan conditioning, even in RIC transplantation, could be an important risk factor for BOS and cGVHD.

Hunninghake GM, Hatabu H, Okajima Y, Gao W, Dupuis J, Latourelle JC, Nishino M, Araki T, Zazueta OE, Kurugol S, et al. MUC5B promoter polymorphism and interstitial lung abnormalities. N Engl J Med. 2013;368 (23) :2192-200.Abstract

BACKGROUND: A common promoter polymorphism (rs35705950) in MUC5B, the gene encoding mucin 5B, is associated with idiopathic pulmonary fibrosis. It is not known whether this polymorphism is associated with interstitial lung disease in the general population. METHODS: We performed a blinded assessment of interstitial lung abnormalities detected in 2633 participants in the Framingham Heart Study by means of volumetric chest computed tomography (CT). We evaluated the relationship between the abnormalities and the genotype at the rs35705950 locus. RESULTS: Of the 2633 chest CT scans that were evaluated, interstitial lung abnormalities were present in 177 (7%). Participants with such abnormalities were more likely to have shortness of breath and chronic cough and reduced measures of total lung and diffusion capacity, as compared with participants without such abnormalities. After adjustment for covariates, for each copy of the minor rs35705950 allele, the odds of interstitial lung abnormalities were 2.8 times greater (95% confidence interval [CI], 2.0 to 3.9; P<0.001), and the odds of definite CT evidence of pulmonary fibrosis were 6.3 times greater (95% CI, 3.1 to 12.7; P<0.001). Although the evidence of an association between the MUC5B genotype and interstitial lung abnormalities was greater among participants who were older than 50 years of age, a history of cigarette smoking did not appear to influence the association. CONCLUSIONS: The MUC5B promoter polymorphism was found to be associated with interstitial lung disease in the general population. Although this association was more apparent in older persons, it did not appear to be influenced by cigarette smoking. (Funded by the National Institutes of Health and others; number, NCT00005121.).

Washko GR, Parraga G, Coxson HO. Quantitative pulmonary imaging using computed tomography and magnetic resonance imaging. Respirology. 2012;17 (3) :432-44.Abstract

Measurements of lung function, including spirometry and body plethesmography, are easy to perform and are the current clinical standard for assessing disease severity. However, these lung functional techniques do not adequately explain the observed variability in clinical manifestations of disease and offer little insight into the relationship of lung structure and function. Lung imaging and the image-based assessment of lung disease has matured to the extent that it is common for clinical, epidemiologic and genetic investigation to have a component dedicated to image analysis. There are several exciting imaging modalities currently being used for the non-invasive study of lung anatomy and function. In this review, we will focus on two of them; X-ray computed tomography and magnetic resonance imaging. Following a brief introduction of each method, we detail some of the most recent work being done to characterize smoking-related lung disease and the clinical applications of such knowledge.

Xu J-F, Washko GR, Nakahira K, Hatabu H, Patel AS, Fernandez IE, Nishino M, Okajima Y, Yamashiro T, Ross JC, et al. Statins and pulmonary fibrosis: the potential role of NLRP3 inflammasome activation. Am J Respir Crit Care Med. 2012;185 (5) :547-56.Abstract

RATIONALE: The role of 3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitors (statins) in the development or progression of interstitial lung disease (ILD) is controversial. OBJECTIVES: To evaluate the association between statin use and ILD. METHODS: We used regression analyses to evaluate the association between statin use and interstitial lung abnormalities (ILA) in a large cohort of smokers from COPDGene. Next, we evaluated the effect of statin pretreatment on bleomycin-induced fibrosis in mice and explored the mechanism behind these observations in vitro. MEASUREMENTS AND MAIN RESULTS: In COPDGene, 38% of subjects with ILA were taking statins compared with 27% of subjects without ILA. Statin use was positively associated in ILA (odds ratio, 1.60; 95% confidence interval, 1.03-2.50; P = 0.04) after adjustment for covariates including a history of high cholesterol or coronary artery disease. This association was modified by the hydrophilicity of statin and the age of the subject. Next, we demonstrate that statin administration aggravates lung injury and fibrosis in bleomycin-treated mice. Statin pretreatment enhances caspase-1-mediated immune responses in vivo and in vitro; the latter responses were abolished in bone marrow-derived macrophages isolated from Nlrp3(-/-) and Casp1(-/-) mice. Finally, we provide further insights by demonstrating that statins enhance NLRP3-inflammasome activation by increasing mitochondrial reactive oxygen species generation in macrophages. CONCLUSIONS: Statin use is associated with ILA among smokers in the COPDGene study and enhances bleomycin-induced lung inflammation and fibrosis in the mouse through a mechanism involving enhanced NLRP3-inflammasome activation. Our findings suggest that statins may influence the susceptibility to, or progression of, ILD. Clinical trial registered with (NCT 00608764).

Castaldi PJ, San José Estépar R, Mendoza CS, Hersh CP, Laird N, Crapo JD, Lynch DA, Silverman EK, Washko GR. Distinct quantitative computed tomography emphysema patterns are associated with physiology and function in smokers. Am J Respir Crit Care Med. 2013;188 (9) :1083-90.Abstract

RATIONALE: Emphysema occurs in distinct pathologic patterns, but little is known about the epidemiologic associations of these patterns. Standard quantitative measures of emphysema from computed tomography (CT) do not distinguish between distinct patterns of parenchymal destruction. OBJECTIVES: To study the epidemiologic associations of distinct emphysema patterns with measures of lung-related physiology, function, and health care use in smokers. METHODS: Using a local histogram-based assessment of lung density, we quantified distinct patterns of low attenuation in 9,313 smokers in the COPDGene Study. To determine if such patterns provide novel insights into chronic obstructive pulmonary disease epidemiology, we tested for their association with measures of physiology, function, and health care use. MEASUREMENTS AND MAIN RESULTS: Compared with percentage of low-attenuation area less than -950 Hounsfield units (%LAA-950), local histogram-based measures of distinct CT low-attenuation patterns are more predictive of measures of lung function, dyspnea, quality of life, and health care use. These patterns are strongly associated with a wide array of measures of respiratory physiology and function, and most of these associations remain highly significant (P < 0.005) after adjusting for %LAA-950. In smokers without evidence of chronic obstructive pulmonary disease, the mild centrilobular disease pattern is associated with lower FEV1 and worse functional status (P < 0.005). CONCLUSIONS: Measures of distinct CT emphysema patterns provide novel information about the relationship between emphysema and key measures of physiology, physical function, and health care use. Measures of mild emphysema in smokers with preserved lung function can be extracted from CT scans and are significantly associated with functional measures.

Castaldi PJ, Cho MH, San José Estépar R, McDonald M-LN, Laird N, Beaty TH, Washko G, Crapo JD, Silverman EK, Silverman EK. Genome-wide association identifies regulatory Loci associated with distinct local histogram emphysema patterns. Am J Respir Crit Care Med. 2014;190 (4) :399-409.Abstract

RATIONALE: Emphysema is a heritable trait that occurs in smokers with and without chronic obstructive pulmonary disease. Emphysema occurs in distinct pathologic patterns, but the genetic determinants of these patterns are unknown. OBJECTIVES: To identify genetic loci associated with distinct patterns of emphysema in smokers and investigate the regulatory function of these loci. METHODS: Quantitative measures of distinct emphysema patterns were generated from computed tomography scans from smokers in the COPDGene Study using the local histogram emphysema quantification method. Genome-wide association studies (GWAS) were performed in 9,614 subjects for five emphysema patterns, and the results were referenced against enhancer and DNase I hypersensitive regions from ENCODE and Roadmap Epigenomics cell lines. MEASUREMENTS AND MAIN RESULTS: Genome-wide significant associations were identified for seven loci. Two are novel associations (top single-nucleotide polymorphism rs379123 in MYO1D and rs9590614 in VMA8) located within genes that function in cell-cell signaling and cell migration, and five are in loci previously associated with chronic obstructive pulmonary disease susceptibility (HHIP, IREB2/CHRNA3, CYP2A6/ADCK, TGFB2, and MMP12). Five of these seven loci lay within enhancer or DNase I hypersensitivity regions in lung fibroblasts or small airway epithelial cells, respectively. Enhancer enrichment analysis for top GWAS associations (single-nucleotide polymorphisms associated at P < 5 × 10(-6)) identified multiple cell lines with significant enhancer enrichment among top GWAS loci, including lung fibroblasts. CONCLUSIONS: This study demonstrates for the first time genetic associations with distinct patterns of pulmonary emphysema quantified by computed tomography scan. Enhancer regions are significantly enriched among these GWAS results, with pulmonary fibroblasts among the cell types showing the strongest enrichment.