Quantitative Computed Tomography Measures of Pectoralis Muscle Area and Disease Severity in Chronic Obstructive Pulmonary Disease: A Cross-Sectional Study

Abstract

Rationale: Muscle wasting in chronic obstructive pulmonary disease (COPD) is associated with a poor prognosis and is not readily assessed by measures of body mass index (BMI). BMI does not discriminate between relative proportions of adipose tissue and lean muscle and may be insensitive to early pathologic changes in body composition. Computed tomography (CT)-based assessments of the pectoralis muscles may provide insight into the clinical significance of skeletal muscles in smokers.

Objectives: We hypothesized that objective assessment of the pectoralis muscle area on chest CT scans provides information that is clinically relevant and independent of BMI.

Methods: Data from the ECLIPSE (Evaluation of COPD Longitudinally to Identify Predictive Surrogate Endpoints) Study (n = 73) were used to assess the relationship between pectoralis muscle area and fat-free mass. We then used data in a subset (n = 966) of a larger cohort, the COPDGene Study (COPD Genetic Epidemiology) Study, to explore the relationship between pectoralis muscle area and COPD-related traits.

Measurements and Main Results: We first investigated the correlation between pectoralis muscle area and fat-free mass, using data from a subset of participants in the ECLIPSE Study. We then further investigated pectoralis muscle area in COPDGene Study participants and found that higher pectoralis muscle area values were associated with greater height, male sex, and younger age. On subsequent clinical correlation, compared with BMI, pectoralis muscle area was more significantly associated with COPD-related traits, including spirometric measures, dyspnea, and 6-minute-walk distance (6MWD). For example, on average, each 10-cm² increase in pectoralis muscle area was associated with a 0.8-unit decrease in the BODE (Body mass index, Obstruction, Dyspnea, Exercise) index (95% confidence interval, –1.0 to –0.6; P < 0.001). Furthermore, statistically significant associations between pectoralis muscle area and COPD-related traits remained even after adjustment for BMI.

Conclusions: CT-derived pectoralis muscle area provides relevant indices of COPD morbidity that may be more predictive of important COPD-related traits than BMI. However, the relationship with clinically relevant outcomes such as hospitalization and death requires additional investigation. Pectoralis muscle area is a convenient measure that can be collected in the clinical setting in addition to BMI.

Keywords: COPD; wasting; pectoral muscle area; imaging

(Received in original form July 16, 2013; accepted in final form December 18, 2013)

Copyright © 2014 by the American Thoracic Society DOI: 10.1513/AnnalsATS.201307-229OC Internet address: www.atsjournals.org
Chronic obstructive pulmonary disease (COPD) is the third leading cause of death in the United States (1). Approximately 20% of patients with COPD develop a wasting phenotype, which is highly correlated with increased morbidity and mortality and is associated with the term cachexia (2). Although the etiology of this process may include disuse atrophy (3), low tissue oxygen tension (4), hormonal insufficiency (5), and inflammation (6, 7), care must be taken when defining it (8). Body habitus alone may not reflect this process because the pathologic loss of skeletal muscle mass is not always accompanied by a similar loss in adipose tissue (2, 8). For this reason, muscle wasting is not adequately characterized by measures of body mass index (BMI).

Several clinical, epidemiologic, and genetic studies of COPD have used computerized tomography (CT) scans to assess the severity of lung disease (9, 10). Although many of these investigations have focused on the airway and parenchymal manifestations of this process, use of the additional imaging data available external to the lungs to assess muscle wasting has been more limited. Güerri and colleagues reported that smaller cross-sectional area of the intercostal and abdominal muscles was associated with a history of more frequent acute exacerbations of COPD (AECOPD) (11). In a larger cohort, Marquis and colleagues demonstrated that mid-thigh cross-sectional area was independently predictive of death in 142 smokers (12). Although these investigations provide compelling data justifying the usefulness of CT-based assessments of muscle area, they were either small (n = 10 case subjects and 10 control subjects for the AECOPD Study) or in the case of the mid-thigh cross-sectional area study, used data not commonly obtained in a standard clinical CT scan of the chest.

Our goal was to develop and investigate a measure that may be applied to existing, clinically acquired CT scans of the chest to assess skeletal muscle area. We focused on the pectoralis muscle area at the level of the aortic arch because both the muscles and aorta are easy to identify and measurement could be standardized across one or more cohorts. We hypothesized that pectoralis muscle area may provide clinically relevant insight into smoking-related COPD and that these associations would be both independent from and stronger than BMI. Some of the results detailed in this manuscript have been previously reported in the form of an abstract (13).

Methods

We used two research cohorts for this investigation. We began by examining the association of pectoralis muscle area and measures of fat-free mass at baseline in a subset of 73 subjects enrolled in the Evaluation of COPD Longitudinally to Identify Predictive Surrogate Endpoints (ECLIPSE) Study (10). Bioelectrical impedance analysis (BIA) was performed on each subject, using the Bodystat 1500 (Bodystat Ltd, Isle of Man, UK), and the resistance was used to calculate fat-free mass (14) as previously described (15). The goal of this analysis was to establish the correlation between fat-free mass and pectoralis muscle area; therefore we investigated only that subset of the total ECLIPSE population that had pectoralis muscle area assessment (ECLIPSE) Study (10). Bioelectrical impedance analysis (BIA) was performed on each subject, using the Bodystat 1500 (Bodystat Ltd, Isle of Man, UK), and the resistance was used to calculate fat-free mass (14) as previously described (15). The goal of this analysis was to establish the correlation between fat-free mass and pectoralis muscle area; therefore we investigated only that subset of the total ECLIPSE population that had pectoralis muscle area assessment.

The goal of this analysis was to establish the correlation between fat-free mass and pectoralis muscle area; therefore we investigated only that subset of the total ECLIPSE population that had pectoralis muscle area assessment. We used two research cohorts for this investigation. We began by examining the association of pectoralis muscle area and measures of fat-free mass at baseline in a subset of 73 subjects enrolled in the Evaluation of COPD Longitudinally to Identify Predictive Surrogate Endpoints (ECLIPSE) Study (10). Bioelectrical impedance analysis (BIA) was performed on each subject, using the Bodystat 1500 (Bodystat Ltd, Isle of Man, UK), and the resistance was used to calculate fat-free mass (14) as previously described (15). The goal of this analysis was to establish the correlation between fat-free mass and pectoralis muscle area; therefore we investigated only that subset of the total ECLIPSE population that had pectoralis muscle area assessment (ECLIPSE) Study (10). Bioelectrical impedance analysis (BIA) was performed on each subject, using the Bodystat 1500 (Bodystat Ltd, Isle of Man, UK), and the resistance was used to calculate fat-free mass (14) as previously described (15). The goal of this analysis was to establish the correlation between fat-free mass and pectoralis muscle area; therefore we investigated only that subset of the total ECLIPSE population that had pectoralis muscle area assessment.
6-minute-walk distance (6MWD); BODE (Body mass index, Obstruction, Dyspnea, Exercise) Index and Modified Medical Research Council (MMRC) scores; and history of exacerbation. For pectoralis muscle area and BMI, all linear or logistic regression analyses with clinical traits were adjusted for confounders including age, sex, height, current smoking, and pack-years of smoking. Sex-stratified regression models were performed in male and female COPD case subjects adjusting for age, height, current smoking, and pack-years of smoking. Regression models of SpO_2, were also adjusted for center, as a dichotomous variable, to account for the effect of altitude on oxygen tension at the National Jewish Health clinical center in Denver, Colorado (17). Model diagnostics, including the visual inspection of normal probability plots of residuals and plots of residuals against predictor variables to ensure assumptions of normality, independence, and constancy of error variance, held. A P value less than 0.05 was considered significant. All statistical analyses were performed with R version 2.15.1 (http://cran.r-project.org/).

Results

Descriptive Characteristics of Study Populations Used in the Analyses

Table 1 describes the baseline characteristics of the 58 COPD case subjects and 15 control subjects from ECLIPSE and the 484 COPD case subjects and 482 smoking control subjects in the COPDGene Study included in the analyses. Case subjects and control subjects in both studies differed significantly with respect to lung function measures and smoking exposures. The control subjects were slightly younger in both studies.

Correlation between Pectoralis Muscle Area and Fat-Free Mass and Examination of Interreader Pectoralis Muscle Area

In the ECLIPSE Study, pectoralis muscle area was correlated with fat-free mass as demonstrated by an adjusted model R^2 of 0.76. Bland–Altman plots of fat-free mass and pectoralis muscle area and of BMI and pectoralis muscle area did not indicate a systematic bias across the range of pectoralis muscle area in the analysis (see Figures E1a and E1b in the online supplement). The interreader pectoralis muscle area R^2 correlation was 0.73, and the Bland–Altman plot (Figure E1c) did not indicate a systematic bias across the range of pectoralis muscle area values between readers.

Pectoralis Muscle Area Relationship with Lung Function Measurements in COPD

A COPD case-only analysis was performed to compare pectoralis muscle area and BMI with spirometry and CT measures of emphysema and to determine potential relationships among those groups. In general, those subjects with greater pectoralis muscle area had significantly higher FEV_1, higher FVC, and less airflow obstruction as assessed by the FEV_1/FVC ratio. For example, in Table 3, on average a 1-cm2 increase in pectoralis muscle area was significantly associated with an increase of 0.81% predicted FEV_1 (95% CI, 0.63 to 0.99; $P < 0.001$) when adjusted for age, sex, height, cigarette pack-years, and current smoking status. Most interestingly, a 1-cm2 increase in pectoralis muscle area was significantly associated with a 0.63% increase in pectoralis muscle area.
less emphysema (95% CI, –0.75 to –0.51; P < 0.001). These observations were also consistent when examining BMI, although the relationship between BMI and FVC did not reach statistical significance (Table 3).

Pectoralis Muscle Area Relationship with Clinically Relevant Traits in COPD Case Subjects

The associations of CT measures of the pectoralis muscles with SGRQ total and active scores, SpO₂ levels, 6MWD, BODE Index score, MMRC dyspnea score, and history of exacerbation in the year before enrollment were examined (Table 3). In multivariate models adjusted for age, sex, height, cigarette pack-years, and current smoking status, pectoralis muscle area was significantly and negatively associated with SGRQ total and active scores as well as the MMRC dyspnea score and 6MWD. On average, those subjects with greater pectoralis muscle area had less disease-related impact as assessed by the SGRQ total and active scores, less dyspnea, and greater exercise capacity as reflected by their 6MWD. In contrast, only the 6MWD was statistically significantly associated with BMI; there was no statistically significant association between BMI and either the SGRQ or MMRC dyspnea score, although there was a statistically significant association between greater BMI and a shorter 6MWD.

Sex-Stratified Analyses

We performed a sex-stratified analysis for both pectoralis muscle area and BMI (Tables E1 and E2). When we analyzed pectoralis muscle area in men and in women separately, the direction of effect was similar to that of the combined analysis. However, when we analyzed BMI separately by sex, we noted that the direction of effect was opposite in men and women for FVC, SGRQ active, and MMRC. However, none of these associations for BMI reached statistical significance.

Pectoralis Muscle Area Associations with Lung Function Measurements and Clinical Traits Controlling for BMI

Last, we examined linear regression models of pectoralis muscle area with lung function measurements and clinical traits adjusted for BMI in addition to the above-described covariates (Table 4). Overall, pectoralis muscle area remained statistically significant for its association with all lung function measurements and with clinical traits when BMI was also included in the model. With the exception of BODE, the statistical significance increased as did the magnitude of the effect, as described by mean difference, for pectoralis muscle area with all clinical traits when the association was controlled for BMI. In particular, from Table 3, each 1-cm² increase in pectoralis muscle area was associated with a 8.3-m increase in 6MWD (95% CI, 4.2 to 12.4; P < 0.001) after adjusting for age, sex, height, cigarette pack-years, and current smoking status. When the model also controlled for BMI (Table 4), a 1-cm² increase in pectoralis muscle area was associated with an average increase of 12.5 m walked (95% CI, 8.0 to 17.0; P < 0.001).

Discussion

Overall, we have demonstrated that a new CT-derived anthropometric measure,
Figure 2. Distribution of pectoralis muscle area (in cm²) stratified by GOLD stage in the COPDGene Study (13). Sample sizes for each group are listed within their respective box plots. The P values for each group compared with the control subjects are reported in parentheses. COPDGene = COPD Genetic Epidemiology; GOLD = Global Initiative for Chronic Obstructive Pulmonary Disease.

Pectoralis muscle area, is correlated with fat-free mass and is associated with the presence of COPD. We have also provided evidence that pectoralis muscle area is associated with higher GOLD stage and is more statistically significantly associated with measures of COPD disease severity than BMI. Our analyses adjusting for BMI also demonstrate that these associations are independent of BMI.

In our study, we found that a higher pectoralis muscle area was associated with male sex, taller stature, younger age, and current smoking status. These results are not surprising and are consistent with prior studies of lean body mass (7, 18–20). Pectoralis muscle area also was lower in subjects with worse lung function (more severe airflow limitation) and in those with lower resting oxygen saturations, a key indicator of poor prognosis (17). Further work is needed to refine our understanding of these observations.

A notable finding in our investigation is the inverse association between pectoralis muscle area and CT emphysema. Our results are consistent with previous studies that have reported that those subjects with a higher BMI tended to have less emphysema on their CT scan (21–24). A similar link between bone density and CT emphysema has also been described. Engelen and colleagues (25) also observed that patients with emphysema had lower values for BMI, lower lean mass, and lower bone mineral content. Further work is needed to understand the biologic link between these two processes.

Shoup and colleagues (26) have previously examined the relationship of weight and lean body mass with measures of health-related quality of life as determined by the SGRQ. In their cohort of 50 patients with expiratory airflow obstruction, low lean body mass (as assessed by dual-energy X-ray absorptiometry) was associated with greater activity and total SGRQ scores (26), whereas both underweight and overweight patients experienced higher total SGRQ scores. In our much larger cohort, we found similar results with pectoralis muscle area being significantly inversely associated with MMRC and SGRQ. We, however, did not find an association between BMI and either MMRC or the SGRQ, possibly because of the previously documented nonlinear relationship between weight and health-related quality of life measures (26). This is in keeping with findings from Mostert and colleagues (27), who found that patients with COPD who lost fat-free mass irrespective of body weight had greater impairment in 12MWD, handgrip strength, and SGRQ. This finding in conjunction with results from observational research reporting lower mortality in obese critically ill patients (the obesity paradox) (28) highlights the need to include measures of muscle mass when assessing body composition.

We also observed that those patients with COPD with better exercise capacity as assessed by 6MWD tended to have higher pectoralis muscle area but lower BMI. When we assessed the effect of pectoralis muscle area on 6MWD while adjusting for BMI, we observed a stronger relationship, both in effect size and statistical significance, between pectoralis muscle area and 6MWD. Given the relationship between lean body mass and adipose tissue in determining BMI (e.g., in our study pectoralis muscle area and BMI were correlated [R² = 0.13]), our results are consistent with the hypothesis that it is not the muscle mass that is driving the inverse association between BMI and the 6MWD, but rather the adipose tissue in excess of the lean body mass that is detrimental to exercise capacity in smokers.

However, we must note that neither BMI nor pectoralis muscle area was significantly associated with a history of severe exacerbations. This analysis may have been limited by the small sample of 484 COPD case subjects in which we performed the analyses. Also, the more relevant question regarding the influence of pectoralis muscle area on exacerbations is whether pectoralis muscle area can be used to predict exacerbation frequency and clinical outcomes such as mortality. This requires implicit knowledge that the exposure (e.g., decrease in pectoralis muscle area) occurred in advance of the subsequent development of the trait or outcome (e.g., death), and therefore it is more appropriately investigated using a longitudinal study design (29).

Fortunately, the COPDGene Study is currently enrolling participants in a second 5-year study that will provide longitudinal data to address these sorts of questions. It is important to note that case–control studies have many other advantages over longitudinal studies including typically being less expensive to conduct, requiring less time to begin investigating research questions, and offering a convenient approach for investigating many exposures (29). Further, the analysis of a case–control study within an ongoing longitudinal study is an efficient use of resources. The COPDGene Study has harnessed these advantages with the initial recruitment criteria including a 10+ pack-year smoking history in both case subjects and control subjects. Thus at the 5-year visit, a significant proportion of the control subjects are expected to have developed COPD, which would allow investigators the opportunity to calculate incidence rates or risks.

Finally, it is interesting that pectoralis muscle area was more significantly associated with BODE score than with BMI despite the fact that BMI is one of the four components of BODE. An explanation
for this may be found by examining three
determinants of BODE (airflow limitation,
dyspnea, and exercise capacity). For all
three components, pectoralis muscle area
was more statistically significantly
associated with these traits than BMI,
which in aggregate likely resulted in pectoralis
muscle area being more highly associated with
BODE. Further work is needed to determine
whether CT-based measures of pectoralis
muscle area may outperform BODE in
predicting mortality in COPD.

Our findings dovetail with previous
well-established reports that quantitative
assessments of both the intercostal
muscles and quadriceps are associated
with exacerbations and mortality in
COPD (11, 12). The uniqueness of our
study lies in the ease and practicality of
obtaining additional clinically relevant
information pertaining to skeletal muscle
size from readily available CT scans of
the chest. Given the increased interest in
phenotyping COPD patients with CT scan
(21), the usefulness of imaging to assess
elegibility for lung volume reduction
procedures (22, 23), and the potential
reduction in mortality associated with CT
screening for lung cancer (24), it is likely
such imaging will be widely employed as a
clinical tool. Our technique can be applied
to such images at no added cost of
acquisition or burden of radiation exposure
to the patient.

There are limitations to this
investigation. As detailed in Methods, we
selected to perform an analysis of the
cross-sectional area of the pectoralis
muscles in a single axial slice through the
chest. Our intent was to develop and
validate a measure that may be applied to
existing clinically acquired imaging data. We
did not assess muscle area on multiple
slices or take advantage of the nature of
the research-acquired CT scans to measure
muscle volume. Further, it was not possible
to completely blind readers to BMI as
adipose tissue is readily visible on chest
CTs. However, it is not likely that this
limitation influenced our overall
conclusions as our results held even in
models adjusting for BMI (Table 4). Our
goal was to explore the usefulness of
a tool that would be simple to use and
could be readily disseminated or replicated
on existing radiology viewing stations
(and even freely available DICOM [Digital
Imaging and Communications in
Medicine] viewing software) without
training or computer science support.
This would allow clinicians and researchers
to explore these measures in their existing
patient and investigational cohorts
(pulmonary fibrosis, lung cancer, lung
transplantation, etc.). Further, we compared
pectoralis muscle area with fat-free mass as
measured by BIA. Measurement of fat-free
mass by BIA is an indirect method of body
composition. To do so would require
models with pectoralis muscle area
were adjusted for age at enrollment, sex, height, current smoking, and cigarette pack-years. Models with BMI were
adjusted for the same variables with the exception of height. Regression models of Sp
were also adjusted for center.

Table 3: Relationship between pectoralis muscle area and body mass index to clinical and computed tomography scan traits in chronic obstructive pulmonary disease case subjects

<table>
<thead>
<tr>
<th>Trait</th>
<th>Pectoralis Muscle Area (Case Subjects)</th>
<th></th>
<th></th>
<th>BMI (Case Subjects)</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean Difference per cm² Increment in Pectoralis Muscle Area</td>
<td>95% CI</td>
<td>P Value</td>
<td>Mean Difference per kg/m² Increment in Body Mass Index</td>
<td>95% CI</td>
<td>P Value</td>
</tr>
<tr>
<td>Lung function</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FEV₁, % pred</td>
<td>0.81</td>
<td>0.63 to 0.99</td>
<td><0.001</td>
<td>0.84</td>
<td>0.59 to 1.09</td>
<td><0.001</td>
</tr>
<tr>
<td>FVC, % pred</td>
<td>0.37</td>
<td>0.19 to 0.55</td>
<td><0.001</td>
<td>0.13</td>
<td>-0.12 to 0.38</td>
<td>0.3</td>
</tr>
<tr>
<td>FEV₁/FVC</td>
<td>0.0062</td>
<td>0.0042 to 0.0082</td>
<td><0.001</td>
<td>0.0082</td>
<td>0.0064 to 0.0100</td>
<td><0.001</td>
</tr>
<tr>
<td>CT emphysema, %</td>
<td>-0.63</td>
<td>-0.75 to -0.51</td>
<td><0.001</td>
<td>-1.01</td>
<td>-1.17 to -0.85</td>
<td><0.001</td>
</tr>
<tr>
<td>Clinical</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SGRQ total</td>
<td>-0.44</td>
<td>-0.64 to -0.24</td>
<td><0.001</td>
<td>-0.037</td>
<td>-0.33 to 0.26</td>
<td>0.8</td>
</tr>
<tr>
<td>SGRQ active</td>
<td>-0.58</td>
<td>-0.83 to -0.33</td>
<td><0.001</td>
<td>0.045</td>
<td>0.308 to 0.398</td>
<td>0.81</td>
</tr>
<tr>
<td>Sp₂O₂</td>
<td>0.038</td>
<td>0.009 to 0.067</td>
<td>0.01</td>
<td>-0.038</td>
<td>-0.0792 to 0.0032</td>
<td>0.073</td>
</tr>
<tr>
<td>6-Minute-walk distance, m</td>
<td>8.3</td>
<td>4.2 to 12.4</td>
<td><0.001</td>
<td>-6.3</td>
<td>-12.2 to -0.4</td>
<td>0.03</td>
</tr>
<tr>
<td>BODE</td>
<td>-0.082</td>
<td>-0.104 to -0.060</td>
<td><0.001</td>
<td>-0.076</td>
<td>-0.105 to -0.047</td>
<td><0.001</td>
</tr>
<tr>
<td>MMRC</td>
<td>-0.029</td>
<td>-0.043 to -0.015</td>
<td><0.001</td>
<td>0.00055</td>
<td>-0.01905 to 0.02015</td>
<td>0.96</td>
</tr>
<tr>
<td>Odds Ratio</td>
<td></td>
<td></td>
<td></td>
<td>Odds Ratio</td>
<td></td>
<td></td>
</tr>
<tr>
<td>History of severe exacerbation</td>
<td>0.97</td>
<td>0.94 to 1.0</td>
<td>0.05</td>
<td>0.97</td>
<td>0.94 to 1.0</td>
<td>0.2</td>
</tr>
</tbody>
</table>

Definition of abbreviations: % pred = percentage of the predicted value; BMI = body mass index; BODE = Body mass index, Obstruction, Dyspnea, Exercise; CI = confidence interval; CT = computed tomography; MMRC = Modified Medical Research Council; SGRQ = St. George’s Respiratory Questionnaire; Sp₂O₂ = oxygen saturation as measured by pulse oximetry.

Models with pectoralis muscle area were adjusted for age at enrollment, sex, height, current smoking, and cigarette pack-years. Models with BMI were adjusted for the same variables with the exception of height. Regression models of Sp₂O₂ were also adjusted for center.

McDonald, Diaz, Ross, et al.: Pectoralis Muscle Area and Disease Severity in COPD
Table 4. Relationship of pectoralis muscle area to clinical and computed tomography scan traits in chronic obstructive pulmonary disease case subjects, adjusting for body mass index in models

<table>
<thead>
<tr>
<th>Trait</th>
<th>Mean Difference per cm² Increment in Pectoralis Muscle Area</th>
<th>95% CI</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lung function</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FEV₁, % pred</td>
<td>0.67, 0.47 to 0.87</td>
<td><0.001</td>
<td></td>
</tr>
<tr>
<td>FVC, % pred</td>
<td>0.4, 0.20 to 0.60</td>
<td><0.001</td>
<td></td>
</tr>
<tr>
<td>FEV₁/FVC</td>
<td>0.0044, -0.3092 to 0.3180</td>
<td><0.001</td>
<td></td>
</tr>
<tr>
<td>CT emphysema, %</td>
<td>-0.4, -0.52 to -0.28</td>
<td><0.001</td>
<td></td>
</tr>
<tr>
<td>Clinical</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SGRQ total</td>
<td>-0.52, -0.76 to -0.28</td>
<td><0.001</td>
<td></td>
</tr>
<tr>
<td>SGRQ active</td>
<td>-0.73, -1.00 to -0.46</td>
<td><0.001</td>
<td></td>
</tr>
<tr>
<td>SpO₂</td>
<td>0.061, 0.028 to 0.094</td>
<td>0.001</td>
<td></td>
</tr>
<tr>
<td>6-Minute walk distance, m</td>
<td>12.5, 8.0 to 17.0</td>
<td><0.001</td>
<td></td>
</tr>
<tr>
<td>BODE</td>
<td>-0.072, -0.096 to -0.048</td>
<td><0.001</td>
<td></td>
</tr>
<tr>
<td>MMRC</td>
<td>-0.036, -0.052 to -0.020</td>
<td><0.001</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Odds Ratio per cm² Increment in Pectoralis Muscle Area</th>
<th>95% CI</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>History of severe exacerbation</td>
<td>0.98</td>
<td>0.94 to 1.0</td>
</tr>
</tbody>
</table>

Definition of abbreviations: % pred = percentage of the predicted value; BMI = body mass index; BODE = Body mass index, Obstruction, Dyspnea, Exercise; CI = confidence interval; CT = computed tomography; MMRC = Modified Medical Research Council; SGRQ = St. George’s Respiratory Questionnaire; SpO₂ = oxygen saturation as measured by pulse oximetry.

In addition to adjustment for BMI, models with pectoralis muscle area were adjusted for age at enrollment, sex, height, current smoking, and cigarette pack-years. Regression models of SpO₂ were also adjusted for center.

or the relationship of our pectoralis muscle area measure with prior reports of mid-thigh cross-sectional area or strength (12, 25, 31). Engelen and colleagues (25) observed that whole-body, extremity, and trunk fat-free mass were significantly different in 49 patients with emphysema compared with 28 control subjects. The group observed that fat-free mass was significantly different between both COPD case subjects with emphysema and bronchitis compared with control subjects but could not distinguish between the two COPD subtypes. They also observed that skeletal muscle weakness was associated with extremity wasting. In a cancer population, Mourtzakis and colleagues (32) found that fat-free mass in the limbs did not necessarily correlate with whole-body fat-free mass, but changes in trunk fat-free mass had a strong influence. Given our findings that pectoralis muscle area is associated with clinically relevant COPD traits, it is possible that it provides more valuable information than whole-body fat-free mass measured by dual-energy X-ray absorptiometry for COPD. In our analysis of pectoralis muscle area adjusting for BMI in Table 4, we demonstrated that pectoralis muscle area provides information regarding COPD severity while controlling for BMI. Thus, despite our study’s shortcomings, we have demonstrated that pectoralis muscle area is associated with fat-free mass and offers unique insight into clinical manifestations of smoking-related lung disease independent of what is provided by BMI.

In summary, using clinical, epidemiologic, and radiologic data from two study populations including patients with COPD with a range of airflow limitation, we found that measures of the cross-sectional area of the pectoral muscles demonstrated interesting clinically relevant associations with COPD disease severity. Those with lower pectoralis muscle area tended to have more severe expiratory airflow obstruction, lower quality of life scores, and diminished exercise capacity. Further work is needed to explore the clinical relevance of pectoralis muscle area with markers of systemic inflammation and their prognostic value for morbidity and mortality in COPD. More specifically, the predictive value of pectoralis muscle area with clinically relevant outcomes such as hospitalization and death requires additional investigation.

Author disclosures are available with the text of this article at www.atsjournals.org.

COPDGene Investigators: Core Units

Administrative Core: James Crapo, M.D. (PI), Edwin Silverman, M.D., Ph.D. (PI), Barry Make, M.D., Elizabeth Regan, M.D., Ph.D., Rochelle Lantz, Lori Stepp, Sandra Melanson

Genetic Analysis Core: Terri Beaty, Ph.D., Barbara Klawanderman, Ph.D., Nan Laird, Ph.D., Christoph Lange, Ph.D., Michael Cho, M.D., Stephanie Santorico, Ph.D., John Hokanson, M.P.H., Ph.D., Dawn DelMio, M.D., M.P.H., Nadia Hansel, M.D., M.P.H., Craig Hersh, M.D., M.P.H., Peter Castaldi, M.D., M.Sc., Merry-Lynn McDonald, Ph.D., Jin Zhou, M.D., Ph.D., Manuel Mattheisen, M.D., Ph.D., Emily Wan, M.D., Megan Hardin, M.D., Jacqueline Hetmanski, M.S., Margaret Parker, M.S., Tanda Murray, M.S.

Imaging Core: David Lynch, M.B., Joyce Schroeder, M.D., John Newell, Jr., John Reilly, M.D., Harvey Coxson, Ph.D., Philip Judy, Ph.D., Eric Hoffman, Ph.D., George Washko, M.D., Raul San Jose Estepar, Ph.D., James Ross, M.Sc., Mustafa Al Qaisi, M.D., Jordan Zach, Alex Kluiber, Jere Sieren, Tanya Mann, Deanna Richert, Alexander McKenzie, Jaleh Akhavan, Douglas Stinson

PFT QA Core, LDS Hospital, Salt Lake City, UT: Robert Jensen, Ph.D.

Biological Repository, Johns Hopkins University, Baltimore, MD: Horrayoon Farzadegan, Ph.D., Stacey Meyer, Shrivam Chandan, Samantha Bragan

Data Coordinating Center and Biostatistics, National Jewish Health, Denver, CO: Douglas Everett, Ph.D., Andre Williams, Ph.D., Carla Wilson, M.S., Anna Forssen, M.S., Amber Powell, Joe Piccoli

Epidemiology Core, University of Colorado School of Public Health, Denver, CO: John Hokanson, M.P.H., Ph.D., Marcie Santag, Ph.D., Jennifer Black-Shinn, M.P.H., Gregory Kinney, M.P.H., Ph.D., Sharon Lutz, M.P.H., Ph.D.

COPDGene Investigators: Clinical Centers

VA Ann Arbor Health Care, Ann Arbor, MI: Jeffrey Curtis, M.D., Elia Kazeroceno, M.D.

Baylor College of Medicine, Houston, TX: Nicola Hanania, M.D., M.S., Philip Alapat, M.D., Venkata Bandy, M.D., Kalpalatha Guntupalli, M.D., Elizabeth Guy, M.D., Antara Mallampalli, M.D., Charles Trinh, M.D., Mustafa Atik, M.D., Hasan Al-Azzawi, M.D., Marc Willis, D.O., Susan Pinero, M.D., Linda Fehr, M.D., Arun Nachiapam, M.D., Collin Bray, M.D., L. Alexander Frigini, M.D., Carlos Farinas, M.D., David Katz, M.D., Jose Freytes, M.D., Anne Marie Maroel, M.D.
References

