Computed Tomographic Measures of Pulmonary Vascular Morphology in Smokers and Their Clinical Implications

Raúl San José Estépar1-3, Gregory L. Kinney4, Jennifer L. Black-Shinn4, Russell P. Bowler5, Gordon L. Kindklmann6, James C. Ross7, Ron Kikinis1,2, Meilan K. Han8, Carolyn E. Come9, Alejandro A. Diaz9, Michael H. Cho9, Craig P. Hersh9,10, Joyce D. Schroeder10, John J. Reilly11, David A. Lynch10, James D. Crapo12,13, Mark T. Dransfield13, John E. Hokanson9, and George R. Washko7, for the COPDGene Study

1Department of Radiology, 2Surgical Planning Laboratory, 3Laboratory of Mathematics in Imaging, 4Division of Pulmonary and Critical Care, and 5Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts; 6Department of Epidemiology, Colorado School of Public Health, University of Colorado, Denver, Colorado; 7Division of Pulmonary and Critical Care Medicine, and 8Department of Radiology, National Jewish Health, Denver, Colorado; 9Department of Computer Science, University of Chicago, Chicago, Illinois; 10Division of Pulmonary and Critical Care, University of Michigan, Ann Arbor, Michigan; 11Department of Medicine, University of Pittsburgh/UPMC, Pittsburgh, Pennsylvania; 12Department of Medicine, National Jewish Medical and Research Center, Denver, Colorado; and 13Division of Pulmonary and Critical Care, University of Alabama at Birmingham, Birmingham, Alabama

Rationale: Angiographic investigation suggests that pulmonary vascular remodeling in smokers is characterized by distal pruning of the blood vessels. Objectives: Using volumetric computed tomography scans of the chest we sought to quantitatively evaluate this process and assess its clinical associations.

Methods: Pulmonary vessels were automatically identified, segmented, and measured. Total blood vessel volume (TBV) and the aggregate vessel volume for vessels less than 5 mm² (BV5) were calculated for all lobes. The lobe-specific BV5 measures were normalized to the TBV of that lobe and the nonvascular tissue volume (BV5/TissueV) to calculate lobe-specific BV5/TBV and BV5/TissueV ratios. Densitometric measures of emphysema were obtained using a Hounsfield unit threshold of −950 (%LAA-950). Measures of chronic obstructive pulmonary disease severity included single breath measures of diffusing capacity of carbon monoxide, oxygen saturation, the 6-minute-walk distance, St George’s Respiratory Questionnaire total score (SGRQ), and the body mass index, airflow obstruction, dyspnea, and exercise capacity (BODE) index. Measurements and Main Results: The %LAA-950 was inversely related to all calculated vascular ratios. In multivariate models including age, sex, and %LAA-950, lobe-specific measurements of BV5/TBV were directly related to resting oxygen saturation and inversely associated with both the SGRQ and BODE scores. In similar multivariate adjustment lobe-specific BV5/TissueV ratios were inversely related to resting oxygen saturation, diffusing capacity of carbon monoxide, 6-minute-walk distance, and directly related to the SGRQ and BODE.

Conclusions: Smoking-related chronic obstructive pulmonary disease is characterized by distal pruning of the small blood vessels (<5 mm²) and loss of tissue in excess of the vasculature. The magnitude of these changes predicts the clinical severity of disease.

Keywords: pulmonary vascular morphology; CT scan; smoking; COPD

It is estimated that 30–70% of subjects with chronic obstructive pulmonary disease (COPD) have clinically significant pulmonary vascular disease (1–4). There are, however, few therapies available for this disease despite it being associated with increased use of healthcare resources and being an independent predictor of mortality (5–10). Reasons for this include the inability to perform detailed studies of pulmonary vascular disease in large cohorts of smokers and limited understanding of who is at greatest risk of suffering from such disease.

As ascertained by early roentologic investigation, angiography, and necropsy, there are several types of macroscopic pathologic pulmonary vascular changes possible in smokers. These aberrant morphologies reflect several processes including inflammatory remodeling with progressive luminal occlusion, vessel elongation in regions of hyperinflation, and outright loss of vascularity in regions of severe emphysematous destruction (11–18). The structural manifestations of such processes have a deleterious impact on blood flow.

Tools that are currently available to assess the pulmonary vasculature, such as histologic examination and right heart
catheterization (RHC), are too invasive to perform on large numbers of subjects. Further, RHC, echocardiography, and measures of single breath diffusing capacity of carbon monoxide (DL\textsubscript{CO}) suffer from significant limitations. Just as FEV\textsubscript{1} cannot discern the relative admixture of emphysema and airway disease in COPD (both thought to be highly relevant predictors of disease manifestations, such as rate of decline in lung function or acute exacerbations of disease [19–22]), RHC, echocardiography, and DL\textsubscript{CO} lack the ability discern the types of pathologic vascular remodeling present and their regional distribution.

Computed tomographic (CT) imaging of the chest may be able to quantitatively assess macroscopic pulmonary vascular morphology in smokers and how it may be associated with outcomes in COPD. Using data from a subset of subjects enrolled in the COPDGene Study we sought to obtain CT-based assessments of pulmonary vasculature morphology among subjects with varying degrees of expiratory airflow obstruction and then examine their clinical associations. Based on our prior investigation (23, 24) we hypothesized that those smokers with the greatest distal pruning of the vasculature measured by a decrease in their distal vascular blood vessel volume would have the greatest clinical impairment.

METHODS

Study Population

The COPDGene Study has been described in detail previously. The study enrolled a total of 10,362 subjects; an interim analysis was planned after enrollment of the first 2,500 subjects (25). For our current investigation we focused on three groups of subjects within the COPDGene Study. The first group included 359 smokers, from the first 2,500 subjects, who were enrolled in a single center, National Jewish Health, and had complete CT data. This subset was selected to minimize the impact of variable scanner brands, generations, and image reconstruction parameters on measures of vascular morphology. The second group included 82 never-smokers with normal lung function (26) and no history of lung disease for whom we had measures of vascular morphology. These subjects were recruited from several centers in the COPDGene Study network as described previously (26). The third group was comprised of 16 subjects who, against study protocol, enrolled and were CT scanned twice in the study. All of these subjects except two went to the same study center for their second enrollment. The repeat scans were done within 6 months of the first scan and we selected those subjects whose total lung capacity on follow-up was within 200 ml of the first scan.

CT Scan Examination

Standardized volumetric CT scans of the chest were performed at full inspiration using the COPDGene Study imaging protocol with 120 kVp, 200 mAs, and 0.5 rotation time. The smoking group was scanned at a single center using two scanning platforms: GE LightSpeed 16 (GE, Milwaukee, WI) and Siemens Definition (Siemens, Munich, Germany). The never-smoker control subjects were scanned using GE LightSpeed 16, GE Discovery HD750, Siemens Definition, Siemens Definition AS+, or Siemens Definition Flash. Images were reconstructed using a standard algorithm at 0.625-mm slice thickness and 0.625-mm intervals for the GE scanner. Siemens CT images were reconstructed using a B31f algorithm at 0.75-mm slice thickness and 0.5-mm intervals.

Clinical and Physiologic Assessments

Oxygen saturation was measured using pulse oximetry with the subject seated at rest breathing ambient gas. Spirometric measures of lung function were performed using the Easy-One spirometer (ndd Medical Technologies, Inc., Andover, MA) before and after the administration of a short-acting inhaled bronchodilator per American Thoracic Society recommendations and expressed as a percent of predicted values for age, height, race, and sex (27, 28). Exercise capacity was assessed by the maximal distance a subject could walk in 6 minutes (6-MWD). Data from the St. George’s Respiratory Questionnaire (SGRQ) provided measures of disease-related health impairment, with a higher total score suggesting greater disease impact and lower quality of life (29).

Using the spirometric measures of lung function, Modified Medical Research Council dyspnea score (30), body mass index, and 6-MWD, the body mass index, airflow obstruction, dyspnea, and exercise capacity (BODE) index was used to predict mortality in COPD was calculated (31). Post-bronchodilator measures of DL\textsubscript{CO} (n = 139) were obtained in a subset of this cohort.

CT Scan Analysis

Volumetric CT scans of the chest were performed at maximal inflation. Densitometric measures of emphysema using a Hounsfield unit threshold of −950 (\%LAA-950) and lung lobe segmentation were performed using Airway Inspector (www.AirwayInspector.org) (32, 33). The pulmonary vasculature was automatically segmented from the parenchyma using in-house software (additional detail on the method for extracting these measurements is provided in the online supplement) (34, 35). Assessments of pulmonary vascular morphology included total blood vessel volume (TBV) in the combined intraparenchymal pulmonary arteries and veins and the aggregate blood vessel volume in vessels less than 5 mm3 in cross-section (BV5) for the whole lung and lung lobe. This latter 5 mm3 cutoff was based on prior investigation (23, 24, 36). Given the inherent anatomic variability in blood vessel volume (i.e., taller people have a greater blood vessel volume) the BV5 measures were normalized by expressing them as ratios of the BV5 (i.e., BV5\textsubscript{RUL}/TBV\textsubscript{RUL}) of that lobe of interest.

The lobe-specific measures of BV5 were also normalized by the nonvascular tissue volume (\textsubscript{V}Tissue) (i.e., BV5\textsubscript{RUL}/\textsubscript{Tissue}V\textsubscript{RUL}) of that same lobe of interest. This latter ratio was created to examine the symmetry or asymmetry of tissue and blood vessel loss in emphysematous parenchyma. To do this the total volume and the volume of emphysema from the total lobe volume provided a measure of tissue volume, which included the vasculature; subtraction of the TBV from that value resulted in a measure of the nonvascular tissue volume for the lobe. Vascular analysis was performed independently in all lung lobes and the right and left lung. The right upper (RUL) and right lower lobe (RLL) were selected to assess clinical correlates of the lobe-specific vascular analysis. Data and clinical associations for the remaining lobes are presented in the online supplement and referenced where appropriate. The COPDGene Study was approved by the Institutional Review Boards of all participating centers, and written informed consent was obtained from each subject before his or her enrollment. Subjects with symmetrically reduced FEV\textsubscript{1} and FVC and a preserved FEV\textsubscript{1}/FVC ratio (Global Initiative for Chronic Obstructive Lung Disease [GOLD] U) were excluded from this analysis (37).

Statistical Analysis

Data are presented as means ± SD or medians and interquartile range where appropriate. Pulmonary vascular morphology was analyzed as a continuous covariate and was expressed as a measure of whole lung or lobar blood volumes (i.e., TBV\textsubscript{global}, BV5\textsubscript{global}, BV5\textsubscript{RUL}, BV5\textsubscript{RLL}, and so forth) and lobar vessel volumes normalized for either the lobar total blood volume or the lobar total nonvascular tissue volume. Lobe-specific ratios for the BV5 adjusted by the TBV in that same lobe are designated as the BV5\textsubscript{RUL}/TBV\textsubscript{RUL} and BV5\textsubscript{RLL}/TBV\textsubscript{RLL} for the RUL and RLL, respectively. Similarly, lobe-specific ratios of the BV5 to total nonvascular tissue volume in that same lobe are designated as the BV5\textsubscript{RUL}/\textsubscript{Tissue}V\textsubscript{RUL} and BV5\textsubscript{RLL}/\textsubscript{Tissue}V\textsubscript{RLL}, respectively. A signed-rank test of the difference in BV5 quantities was used to compare reproducibility in the 16 subjects with repeat CT scans. Nonparametric methods were used to assess differences in blood vessel volume among groups, whereas linear regression was used to evaluate trends across GOLD stages. Univariate (Pearson) and multivariate linear regression were used to examine the relationship between CT measures of pulmonary vascular morphology and \%LAA-950, resting oxygen saturation, DL\textsubscript{CO}, the 6-MWD, and SGRQ total score. The relationship between CT measures of pulmonary vascular morphology and BODE index was assessed with ordinal logistic regression. The odds reported
are for a one SD reduction in the BV5RUL/TBV5RUL, BV5RLL/TBV5RLL,
BV5RUL/TissueV5RUL, and BV5RLL/TissueV5RLL, being associated with a
one point increase in BODE score. The proportional odds assumption was
assessed for each model using chi-square. Multivariate models were
adjusted for age, sex, race, height (centimeter), weight (kilogram),
%LAA-950, and FEV1 percentage predicted (FEV1/PP) unless otherwise
specified. Statistical analysis was performed using SAS 9.3 (Carey, NC).
P values less than 0.05 were considered statistically significant.

RESULTS
In the cohort of 16 subjects with repeat CT scans, there was no
intrasubject difference in BV5 measures (P = 0.2). The clinical
characteristics of the never-smoking normals and smoker cohort
from National Jewish Health are provided in Table 1. Volumet-
ric models of the intraparenchymal pulmonary vasculature were
created for each subject (examples shown in Figure 1) and lobe-
specific plots of the distribution of vessel volume as a function
of vessel cross-sectional area were generated (Figure 2).

Right upper and right lower blood vessel volumes for the
never smokers and smokers are presented in Table 2 (remaining
lung lobe data are provided in Table E1 of the online supple-
ment). There was no difference in the median blood vessel
volume measures between the never-smokers and smoking control
subjects (P > 0.05; data not shown). In the smokers there was
no significant trend observed with the BV5Global, BV5RUL, or
BV5RLL, but the measures of BV5 and nonvascular tissue volume
were decreased in subjects with higher GOLD stages of disease.

Ratios of BV5 to TBV and TissueV are presented in Table 3
(see Table E2) for never-smoking control smokers. For the
RUL and LUL there were significant differences in the BV5 to
TissueV ratio between the never-smokers and smoking control
subjects. No similar difference was noted with the BV5/TBV ratios.
In the smokers, the ratios of BV5 to TBV for all the
lobes decreased with increasing GOLD stage, whereas there
was no similar relationship between GOLD stage and the
BV5 to TissueV ratios. The BV5 to TBV ratio was directly
related to the FEV1/PP (r = 0.36, P < 0.0001 and r = 0.39, P <
0.0001 for the RUL and RLL, respectively). Similar associations
between FEV1/PP and the BV5 to TissueV ratios were not seen.

The BV5Global and the BV5Global were directly related to the
total lung volume calculated from the CT scan (r = 0.48, P <
0.0001 and r = 0.36, P < 0.0001, respectively). Similar associa-
tions were observed for lobe-specific blood vessel volumes and

the volume of the RUL and RLL (TBV5RUL, r = 0.53, P <
0.0001; BV5RUL, r = 0.42, P < 0.0001) and (TBV5RLL, r =
0.41, P < 0.0001; BV5RLL, r = 0.40, P < 0.0001). The BV5Global
was directly related to the BV5Global for the total lung (r = 0.91;
P < 0.0001) and the BV5Global was directly related to the
TBV5RUL and BV5RLL (r = 0.95, P < 0.0001 and r = 0.91,
P < 0.0001, respectively). Furthermore, all vascular measures
(TBV5Global, BV5Global, BV5RUL/TBV5RUL, BV5RLL/TBV5RLL,
BV5RUL/TissueV5RUL, and BV5RLL/TissueV5RLL) were inversely
related to %LAA-950 (Table 4; see Table E8). We then ex-
ploried the associations between clinical measures of disease
severity and CT-assessed intraparenchymal vasculature.

There was no significant association between the DLco and
either the BV5RUL/TBV5RUL or BV5RLL/TBV5RLL; however,
never smokers and smokers are presented in Table 2 (remaining
lung lobe data are provided in Table E1 of the online supple-
ment). There was no difference in the median blood vessel
volume measures between the never-smokers and smoking control
subjects (P > 0.05; data not shown). In the smokers there was
no significant trend observed with the BV5Global, BV5RUL, or
BV5RLL, but the measures of BV5 and nonvascular tissue volume
were decreased in subjects with higher GOLD stages of disease.

Ratios of BV5 to TBV and TissueV are presented in Table 3
(see Table E2) for never-smoking control smokers. For the
RUL and LUL there were significant differences in the BV5 to
TissueV ratio between the never-smokers and smoking control
subjects. No similar difference was noted with the BV5/TBV ratios.
In the smokers, the ratios of BV5 to TBV for all the
lobes decreased with increasing GOLD stage, whereas there
was no similar relationship between GOLD stage and the
BV5 to TissueV ratios. The BV5 to TBV ratio was directly
related to the FEV1/PP (r = 0.36, P < 0.0001 and r = 0.39, P <
0.0001 for the RUL and RLL, respectively). Similar associations
between FEV1/PP and the BV5 to TissueV ratios were not seen.

The BV5Global and the BV5Global were directly related to the
total lung volume calculated from the CT scan (r = 0.48, P <
0.0001 and r = 0.36, P < 0.0001, respectively). Similar associa-
tions were observed for lobe-specific blood vessel volumes and

TABLE 1. DATA DISTRIBUTION FOR THE SUBJECT GROUPS USED IN THIS STUDY

<table>
<thead>
<tr>
<th>Never-Smoking Control</th>
<th>Smokers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subjects (n = 85)</td>
<td>(n = 359)</td>
</tr>
<tr>
<td>Female sex —</td>
<td>185</td>
</tr>
<tr>
<td>Age, yr</td>
<td>62.4 (56.3–69.1)</td>
</tr>
<tr>
<td>FEV1 % predicted</td>
<td>103.7 (93–113)</td>
</tr>
<tr>
<td>Height, cm</td>
<td>163.2 (159.5–171.6)</td>
</tr>
<tr>
<td>Weight, kg</td>
<td>80.2 (63.8–88.5)</td>
</tr>
<tr>
<td>BMI</td>
<td>27.5 (24.1–31.4)</td>
</tr>
<tr>
<td>%LAA-950</td>
<td>0.8 (0.4–2.3)</td>
</tr>
<tr>
<td>Oxygen saturation —</td>
<td>93 (90–95)</td>
</tr>
<tr>
<td>6-MWD, ft</td>
<td>1310 (1,025–1,650)</td>
</tr>
<tr>
<td>SGRQ total score —</td>
<td>32.16 (15.94–47.26)</td>
</tr>
<tr>
<td>BODE (n = 352) —</td>
<td>2 (0–4)</td>
</tr>
<tr>
<td>DLco (n = 135) —</td>
<td>13.11 (8.58–16.64)</td>
</tr>
</tbody>
</table>

Definition of abbreviations: %LAA-950 = percentage of low-attenuation areas less than –950 Hounsfield units; 6-MWD = 6-minute walk distance; BMI = body mass index; BODE = body mass index, airflow obstruction, dyspnea, and exercise capacity index; DLco = diffusing capacity of carbon monoxide; SGRQ = St. George’s Respiratory Questionnaire.
then normalized by the area of lung in the axial scanning plane. Although this measure continues to perform well on standard high-resolution CT there are certain limitations, such as the potential inclusion of nonvascular structures in the analysis and the assumption that data from three axial slices are representative of the entire lung. Additionally, one may question if the clinical relevance of the cross-sectional area measures is driven by the aggregate area of the vessels; the cross-sectional area of the lung (which would be increased in states of hyperinflation); or a combination of the two. To begin to explore these questions we developed a technique to automatically segment and create a three-dimensional model of the intraparenchymal pulmonary vasculature. Using these models we calculated absolute measures of blood vessel volume and lobe-based ratios of distal blood vessel volume to the total intraparenchymal blood vessel volume. We also created lobe-based ratios of distal blood vessel volume to the total nonvascular tissue volume, all with the intent of exploring the association of these measures to the resting oxygen saturation, D_{LCO}, 6-MWD, SGRQ total score, and BODE score. We believed that the breadth of these clinical measures and their potential association with blood vessel morphology as assessed by CT scanning could provide more insight into pulmonary vascular disease in smokers.

Our first measures of the pulmonary vasculature included the TBV and BV5. We found that those subjects with more CT evidence of emphysema had a lower TBV and BV5. These observations are not surprising because angiographic studies of smokers reported a loss of vasculature in regions severely affected by emphysema and narrowing of the remaining segmental and subsegmental vessels (11, 12). The diminution of intraparenchymal blood vessel volume and presumably the intraparenchymal blood vessel volume may proceed centripetally toward the hilum and be

Figure 1. (Top) Coronal images of a never-smoker (left) and smoker with Global Initiative for Chronic Obstructive Lung Disease 4 chronic obstructive pulmonary disease (right). (Middle) Volumetric reconstructions of the pulmonary vasculature that are color-coded based on vessel radii. (Bottom) Distribution of blood vessel volume as a function of the cross-sectional area (CSA) of the vessels. Plots are color-coded based on vessel size as shown in the volumetric models of the vasculature. The larger peaks in the plots in the CSA range of 0–10 mm2 suggest that most intraparenchymal blood vessel volume is within the vessels whose CSA is 0–10 mm2. All plots are the same scale. Note the effect of emphysema on the size of the blood vessel volume peak in the 0–10 mm2 CSA range.
accompanied by reciprocal engorgement and dilation of the more central vasculature to accommodate a shift of blood from the lungs to the extraparenchymal intrathoracic vessels. Recent work by Wells and coworkers (38) suggests that such an increase in vessel caliber has significant prognostic value for the prediction of acute exacerbations of COPD. Further work is required to determine the associations between intraparenchymal and extraparenchymal vessel morphology and if

Figure 2. Summary profiles for the blood vessel volume as a function of blood vessel cross-sectional area (CSA; square millimeter) for all 359 smokers in the range 0–20 mm². Results are provided for each lobe. The color-coded line represents the median profile and the dotted lines the 25th and 75th percentile. The figure inserts for each plot represent an enhanced view of the blood vessel volume distribution in the range of 0–70 mm².

| TABLE 2. BLOOD VESSEL VOLUME MEASURES IN NEVER-SMOKING CONTROL SUBJECTS AND SMOKERS |
|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|
| Variable | Distribution of Blood Vessel Volume Measures |
| --------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|
| | Never-Smoking Control Subjects |
| | (n = 82) |
| | Smoking Control Subjects |
| | (n = 104) |
| | GOLD1 |
| | (n = 27) |
| | GOLD2 |
| | (n = 90) |
| | GOLD3 |
| | (n = 87) |
| | GOLD4 |
| | (n = 51) |
| Current smokers | 0 |
| Whole right lung | 56 |
| TBVright, ml | 96.5 (83.0–114.8) |
| BV5right, ml | 55.8 (46.9–63.6) |
| Tissue Vright, ml | 254 (229–233) |
| Right upper lobe | 49.7 (44.5–56.2) |
| TBVright, ml | 50.1 (42.4–58.2) |
| BV5right, ml | 52.7 (39.6–61.6) |
| Tissue Vright, ml | 46.6 (39.4–57.7) |
| Right lower lobe | 52.6 (30.3–39.6) |
| TBVright, ml | 53.4 (29.9–42.0) |
| BV5right, ml | 36.5 (27.9–44.8) |
| Tissue Vright, ml | 35.0 (27.9–44.8) |
| Whole right lung | 59.2 (52.6–65.6) |
| Tissue Vright, ml | 52.1 (45.4–58.7) |
| Right upper lobe | 93.9 (82.0–108.6) |
| Tissue Vright, ml | 59.7 (51.5–67.9) |
| Right lower lobe | 100.1 (86.0–107.2) |
| Tissue Vright, ml | 98.5 (86.0–107.2) |
| Current smokers | 4.0 |
| Smoking Control Subjects | 1.7 |

Definition of abbreviations: BV5 = pulmonary blood vessel volume in vessels less than 5 mm²; GOLD = Global Initiative for Chronic Obstructive Lung Disease; RUL = right lower lobe; RUL = total intraparenchymal blood vessel volume.

Volumes are presented for the whole right lung and for the right upper and right lower lobes.

Volumes are presented in milliliters as medians and interquartile ranges.

*P value for difference in medians between never-smoking control subjects and smoking control subjects (smokers with normal lung function).

†P value for trend test across GOLD 1–4.
intraparenchymal vascular morphology is associated with acute exacerbations of COPD.

The TBVglobal and BV5global were variably associated with DlCO, resting oxygen saturation, and 6-MWD in univariate models. Generally, those subjects with greater TBVglobal or BV5global tended to have less impairment according to those clinical measures but these observations were not consistent. It is possible that these associations could in part be attributed to total body size rather than disease state. For example, a taller individual with longer legs and larger lungs and thus more intraparenchymal pulmonary vasculature is likely to have a greater 6-MWD independent of disease state. Such anthropomorphic explanations could also be ascribed to the association of the BV5global and the DlCO because the latter was an absolute value not expressed as a percent of predicted.

After an examination of the absolute measures of blood vessel volumes we created lobe-specific ratios of the distal blood volume to the total lobar blood volume. We did this to effectively remove the influence of lung volume on our measures. Using this measure we found that those with the lowest distal to TBV ratio tended to have a lower FEV1 expressed as a percent of the predicted value (i.e., more severe COPD) and greater manifestations of their disease, such as a lower oxygen saturation, a lower 6-MWD, a higher SGRQ total score, and a higher BODE index. These observations (lower oxygen saturation, lower 6-MWD, higher SGRQ total score, higher BODE score) persisted after adjustment for pertinent confounding variables, such as age, sex, height, and %LAA-950. The latter covariate was systematically included in all of these models to explore the association of vascular morphology after accounting for differences in emphysema. The associations between %LAA-950 and clinical outcomes (SGRQ total score and resting oxygen saturation) were no longer significant after adjusting for vascular morphology measurements for all the lobes. Although there may be residual confounding effects, we contend that CT measures of vascular morphology are not simply a surrogate for standard densitometrically assessed emphysema but rather contain unique, clinically relevant information that may be further explored.

We also created lobe-specific ratios of the distal blood volume to the nonvascular tissue volume for each lobe. We did this to...
explore the clinical associations of a metric that we believed may reflect the matching (or disruption) of blood to tissue. In general, those who had a higher ratio of distal blood vessel to tissue volume had more functional impairment from their COPD. Most interesting were the observed associations between these measures and the DLCO in the absence of a similar association between DLCO and distal blood volume to the total blood volume ratios. The DLCO is a measure of the ability of the lung to exchange gases as inferred from the transfer of carbon monoxide into the blood. Our results suggest that an excess of blood volume or more likely a deficiency of tissue per blood volume leads to impaired gas transfer. Further exploration of this concept in a cohort of individuals without COPD who have CT data and corresponding measures of DLCO may provide insight into the optimal matching of blood and tissue in a healthy lung.

The mechanisms by which vascular morphology are linked with the clinical manifestations of disease cannot be ascertained from this cross-sectional investigation. Such requires additional mechanistic study but a possible common link to these processes is the heart. Recently, Barr and coworkers (39) reported in a population-based study that even those with mild emphysema had appreciable decreases in left ventricular filling on cardiac magnetic resonance imaging. Given our observed associations between emphysema and blood volume ratios it is possible that those with a reduced distal to total blood volume ratio experience impaired ventricular filling both at rest and with exercise. Such could explain the decreased 6-MWD, the increased SGRQ, and potentially even the increased BODE index. This conjecture is supported by prior observations that pulmonary vascular disease is an independent predictor of increased morbidity and mortality in patients with COPD (1–4).

There are limitations to this investigation that must be acknowledged including the method of image analysis. No attempt was made to differentiate the morphology of the pulmonary artery or venous circulatory systems. Certainly, additional medical conditions, such as isolated dysfunction of the left or right heart, could selectively affect the arteries or veins and the methodology presented in this manuscript is not able to delineate these effects. Further work must be done to develop an automated robust method for the separation of arteries and veins. It must be noted, however, that in our prior work investigating the relationship of CT measures of pulmonary vascular morphology and pulmonary artery pressures by RHC (24), no attempt was made to delineate artery from vein. This suggests that although there may be selective processes that affect the intraparenchymal veins or arteries, there is a more significant systematic change in pulmonary vascular remodeling in smokers with distal pruning of the vessels.

Despite the modest hemodynamic impact of pulmonary vascular disease in smokers, its morbidity and association with heightened risk of death strongly argues for therapeutic intervention. The only generally accepted treatment for this condition in smokers is supplemental oxygen (40–42). Additional studies of selective and nonselective vasodilators have yielded mixed

TABLE 5. SUMMARY OF MULTIVARIATE MODELS FOR BV5/TBV AND BV5/TISSUE

<table>
<thead>
<tr>
<th>Models</th>
<th>Predictors</th>
<th>DLCO Post-bronchodilator (n = 134)</th>
<th>Oxygen Saturation (n = 358)</th>
<th>6-MWD (t) (n = 351)</th>
<th>SGRQ Score Total (n = 358)</th>
<th>BODE* (n = 349)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Beta</td>
<td>P Value</td>
<td>R²</td>
<td>Beta</td>
<td>P Value</td>
</tr>
<tr>
<td>RUL</td>
<td>BV5/RUL/TBV.RUL</td>
<td>15.20</td>
<td>0.07</td>
<td>0.47</td>
<td>13.44</td>
<td>0.0003</td>
</tr>
<tr>
<td></td>
<td>BV5/RUL/TISSUE.RUL</td>
<td>-512.6</td>
<td><0.0001</td>
<td>0.57</td>
<td>-206.5</td>
<td><0.0001</td>
</tr>
<tr>
<td>RLL</td>
<td>BV5/RLL/TBV.RLL</td>
<td>24.02</td>
<td>0.0021</td>
<td>0.51</td>
<td>16.51</td>
<td><0.0001</td>
</tr>
<tr>
<td></td>
<td>BV5/RLL/TISSUE.RLL</td>
<td>-378.4</td>
<td><0.0001</td>
<td>0.55</td>
<td>-185.1</td>
<td><0.0001</td>
</tr>
<tr>
<td>RML</td>
<td>BV5/RML/TBV.RML</td>
<td>4.35</td>
<td>0.38</td>
<td>0.48</td>
<td>0.54</td>
<td>0.84</td>
</tr>
<tr>
<td></td>
<td>BV5/RML/TISSUE.RML</td>
<td>-553.2</td>
<td><0.0001</td>
<td>0.57</td>
<td>-202.9</td>
<td><0.0001</td>
</tr>
<tr>
<td>LUL</td>
<td>BV5/LUL/TBV.LUL</td>
<td>18.62</td>
<td>0.0136</td>
<td>0.50</td>
<td>10.33</td>
<td>0.0042</td>
</tr>
<tr>
<td></td>
<td>BV5/LUL/TISSUE.LUL</td>
<td>-565.2</td>
<td><0.0001</td>
<td>0.56</td>
<td>-261.7</td>
<td><0.0001</td>
</tr>
<tr>
<td>LLL</td>
<td>BV5/LLL/TBV.LLL</td>
<td>21.26</td>
<td>0.0029</td>
<td>0.51</td>
<td>11.45</td>
<td>0.0006</td>
</tr>
<tr>
<td></td>
<td>BV5/LLL/TISSUE.LLL</td>
<td>-388.7</td>
<td><0.0001</td>
<td>0.54</td>
<td>-256.6</td>
<td><0.0001</td>
</tr>
<tr>
<td>Right Lung</td>
<td>BV5/Right/TBV.Right</td>
<td>25.42</td>
<td>0.0068</td>
<td>0.50</td>
<td>17.58</td>
<td><0.0001</td>
</tr>
<tr>
<td></td>
<td>BV5/Right/TISSUE.Right</td>
<td>-577.50</td>
<td><0.0001</td>
<td>0.58</td>
<td>-235.37</td>
<td><0.0001</td>
</tr>
<tr>
<td>Left Lung</td>
<td>BV5/Left/TBV.Left</td>
<td>23.14</td>
<td>0.0042</td>
<td>0.51</td>
<td>14.56</td>
<td>0.0002</td>
</tr>
<tr>
<td></td>
<td>BV5/Left/TISSUE.Left</td>
<td>-542.35</td>
<td><0.0001</td>
<td>0.56</td>
<td>-293.27</td>
<td><0.0001</td>
</tr>
</tbody>
</table>

Definition of abbreviations: %LAA-950 = percentage of low-attenuation areas less than −950 Hounsfield units; 6-MWD = 6-minute-walk distance; BODE = body mass index, airflow obstruction, dyspnea, and exercise capacity index; BV5/RUL/TBV.RUL = blood vessel volume less than 5 mm² in the right lower lobe divided by the total intraparenchymal blood vessel volume in the right lower lobe; BV5/RLL/TBV.RUL = blood vessel volume less than 5 mm² in the right upper lobe divided by the total intraparenchymal blood vessel volume in the right upper lobe; BV5/RLL/TISSUE.RUL = blood vessel volume less than 5 mm² in the right upper lobe divided by the nonvascular tissue volume of the right upper lobe; BV5/RUL/TISSUE.RUL = blood vessel volume less than 5 mm² in the right lower lobe divided by the nonvascular tissue volume of the right lower lobe; DLCO = diffusing capacity of carbon monoxide; OR = odds ratio; SGRQ = St. George’s Respiratory Questionnaire.

Note that the multivariate models varied in the covariates used for adjustment. These model differences in the inclusion of additional independent covariates were based on biologic plausibility. For example, height was included in models to predict the DLCO and 6-MWD because taller people generally have a larger unadjusted DLCO and can walk farther in 6 minutes. In contrast, height was not included in models to predict resting oxygen saturation because there is no biologically apparent link between the two.

Multivariate models were adjusted as follows. DLCO: %LAA-950, sex, height, and age. Oxygen saturation: FEV1 percent predicted, %LAA-950, and sex. 6-MWD: FEV1 percent predicted, %LAA-950, sex, height, weight, and age. SGRQ score total: FEV1 percent predicted, %LAA-950, sex, and age. BODE: %LAA-950, sex, and age.
results (43–45). Although these therapies are generally found to be efficacious in reducing pulmonary artery pressure, there has been little benefit and frequently a deleterious impact on oxygenation and ventilation-perfusion matching. Elevated vascular resistance because of vessel elongation in the setting of hyperinflation may be best treated by deflation (medical or surgical), vessel narrowing and lumen encroachment by selective vasodilatation, and widespread absence of a vascular bed caused by emphysema may be refractory to therapy or even predispose patients to hemodynamic compromise in the setting of aggressive titration of therapy. Herein we presented a first step toward a more comprehensive assessment of pulmonary vascular morphology. Further work toward a detailed knowledge of the types of vascular remodelling present, their association with both parenchymal and airway disease, and their clinical impact is essential for the development of better treatments for COPD.

Author disclosures are available with the text of this article at www.atjournal.org.

References

19. Washko GR. Rate of decline in FEV1: is emphysema the culprit? Am J Respir Crit Care Med 2012;185:2–3.

